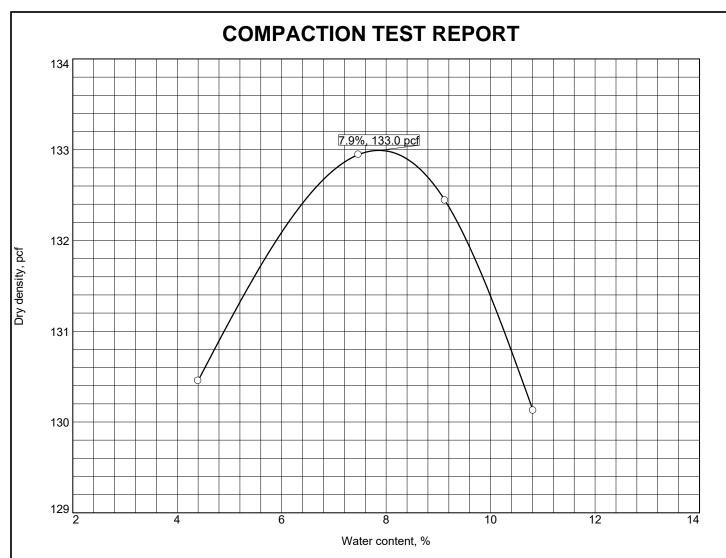

Appendix H-2

Licensed Quarry Material - Information and Analytical Data Report

- Licensed quarry material collected by Tilcon from the Mount Hope quarry (reports included in this
 Appendix) exceeded the DIGWSSL for manganese. Manganese is a naturally occurring and the
 applicable Groundwater Quality Standards are based on secondary considerations (primarily
 aesthetic considerations such as taste, odor, and appearance) and not health considerations; as
 such, the exceedances do not need to be addressed for the impact to groundwater pathway.
- Licensed quarry material collected by Tilcon from the Pompton Lakes quarry (reports included in this Appendix) exceeded the DIGWSSLs for manganese. Manganese is naturally occurring and the applicable Groundwater Quality Standards are based on secondary considerations (primarily aesthetic considerations such as taste, odor, and appearance) and not health considerations; as such, the exceedance does not need to be addressed for the impact to groundwater pathway.



Test specification: ASTM D 1557-12 Method B Modified

Elev/	Classi	fication	Nat.	Sn C		PI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	FI	3/8 in.	No.200
	SP-SM	A-1-b		2.75	NV	NP	0.0	11.8

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 131.6 pcf	Light Gray poorly graded sand with silt
Optimum moisture = 8.5 %	
Project No. 889 Client: CHEMTECH	Remarks:
Project: K4541 - PPG Site 107	SG Assumed 8-30-19
○Sample Number: 107-SCREENINGS-PL001	
RSA Geolab	
Union, New Jersey	Figure

Tested By: MF Checked By: KP

Test specification: ASTM D 1557-12 Method B Modified

Elev/	Classif	fication	Nat.	Sp.G.		DI	% >	% <
Depth	USCS	AASHTO	Moist.	Sp.G.	LL	FI	3/8 in.	No.200
	SP-SM	A-1-b		2.75	NV	NP	0.0	11.6

TEST RESULTS	MATERIAL DESCRIPTION
Maximum dry density = 133.0 pcf	Light Gray poorly graded sand with silt
Optimum moisture = 7.9 %	
Project No. 889 Client: CHEMTECH	Remarks:
	SG Assumed 8-30-19
○Sample Number: 107-SCREENINGS-MH001	
RSA Geolab	
Union, New Jersey	Figure

Tested By: BP Checked By: KP

TILCON NEW YORK INC.

PHONE: 973-366-7741 9 ENTIN ROAD, PARSIPPANY, New Jersey 07054

2021 Clean Fill Material Certification- NJ Locations Only

Tilcon NY Inc. New Jersey Division confirms to the best of our knowledge that the aggregates produced at the locations below are virgin stone products, contain no hazards or contamination prior to shipment of materials and conform to section 901 of the 2007 New Jersey Department of Transportation Standard Specifications for Road and Bridge Construction, The material is identified on the job with Tilcon NJ delivery tickets. The quarries are listed in the Quality List (QPL) of the NJDOT website

http://www.state.nj.us/transportation/eng/materials/qualified/QPLDB.shtm

Pompton Lakes Quarry- Granite Gneiss, 84 Borough of Pompton Lakes, Passaic County Blocks No(s) 5105, 5105 - Lot(s) 84, 14.2.Pompton Lakes quarry contains NJDOT approved crushed stone and certified fill products.

Mt. Hope Quarry- Granite Gneiss, 625 Mt Hope Road, Wharton Borough, Morris County NJ, Block No 20001 Lot(s) No(s) 5.01, 5.02, 7; Block No 70001 Lot No 2; Block No 20101 Lot No 6. Mt Hope quarry contains NJDOT approved crushed stone, washed products and certified fill products.

Tilcon NY Inc. has had Pompton Lakes and Mt Hope quarries analyzed under the EPA Target Compound List as required by the LSRP program- NJDEP Residential Direct Contact Soil Remediation Standards/Clean Fill Criteria. A copy of the report is available upon request. To the best of our knowledge, the materials produced at the above quarries comply with Section 7 of the Fill Material Guidance for SRP Sites.

Riverdale Quarry- Granite Gneiss, 125 Hamburg Turnpike, Riverdale, Morris County NJ, Block No9s0 25, 26, 27, 29 Lot No 3. Riverdale Quarry NJDOT approved crushed stone, washed products and certified fill materials.

Oxford Quarry- Granite Gneiss and Limestone, Quarry and Mt Pisgah Avenue, White Township, Warren County Block 32- Lots 15,16 Block 33- Lots 22,23 Block 34 Lots 19,20 Block 25- Lots 3,5,9,90.1 NJDOT approved crushed stone, washed products and certified materials.

Tilcon New York, INC Quality Control 973-659-3790

S & S ENVIRONMENTAL SCIENCES, INC.

Environmental Engineering, Testing and Consultation

98 Sand Park Road, Cedar Grove, NJ 07009 Tel (973) 857-7188 Fax (973) 239-8380

Kamil Sor, Ph.D. Orhun Sor, P.E. Atilla Sencar, P.E.

This report is the confidential property of the Client, and information contained may not be published or reproduced without our written permission.

Client:	Tilcon New Y	ork, Inc.			
Project:	Mount Hope,	NJ (NJDEP-SRS)			
Subject:	Laboratory Ar	nalysis of Aggregate	Sample (Quar	ry Fines)-	-NJ
Job No.:	07E34	Report Number:	20-E-64	Date:	5/21/2020

We present herewith the laboratory test results of an aggregate sample delivered to our laboratory (identified as Quarry Fines) on April 28, 2020. The sample was collected by a representative of Tilcon NY, on the same day.

As requested, the aggregate sample was analyzed for the U.S. EPA Target Compound List (TCL)+30/Target Analyte List (TAL) parameters, Extractable Petroleum Hydrocarbons (EPH), pH, and Hexavalent Chromium. The analyses were performed by Integrated Analytical Laboratories, LLC (IAL) (NJDEP Lab ID No. 14751). The copies of the IAL/S&S sample chain-of-custody forms, the preliminary IAL laboratory summary report and NJDEP-SRS comparison tables are attached.

Review of the laboratory data and comparison of the sample test results to the NJDEP Residential Direct Contact Soil Remediation Standards (RDCSRS) indicated that the aggregate sample **meet** the **NJDEP-RDCSRS**.

If there are any questions or if we can be of further assistance in this matter, please contact us.

Very truly yours,

S & S ENVIRONMENTAL SCIENCES, INC.

Kamil Sor, Ph.D.

President

KS/ag

Attachments:

(1) Sample Chain-of-Custody Forms, Laboratory Summary Reports, and NJDEP-SRS Comparison Tables

cc: (1) Client

Steve O'Reilly

email: soreillv@tilconny.com

S&S ENVIRONMENTAL SCIENCES, INC.

Environmental Engineering, Testing and Consultation

88 Sand Park Rad, Cedar Grove, NJ 07009 Tel (973) 857-7188 Fax (973) 239-8380

NJDEP Lab Certification No. 07073

SAMPLE CHAIN OF CUSTODY

CLIENT:		100			DATE:	11 1	11-12
ADDRESS:	1 - 1 - 1	7 0 1			SSES JO	D NO	4-20
CONTACT:	+					B NO.	L
	1				TEL. #:	1	
PROJECT:	Mil	UPC, NT			PROJECT	LABID#:	120.049
					·		
SAMPLE NUMBER	SAMPLING DATE	SAMPLING TIME	SAMPLE TYPE	NO. OF BOTTLES	AN	IALYSES REC	QUESTED
20-044	4.28 20	900	Comb		NY-N	17 Clean	411
						, , , , , , , , , , , , , , , , , , , ,	1.11
	-						
Comments:	VATIVE						
	VALIVE	Ī	pH Meter			r	
Cooled at 4°C?			No.:	Reading	T°C	Time	Analyst
HCI							
HNO ₃		1	pH				
12804		L	pH Dup.	1		L	
HOS							
1a ₂ S ₂ O ₃							
Other							
Sampled By:	5.0.						
RELINQUIS	HED BY:	· v	RECEIVE	D BY:		DATE A	ND TIME:
h		1	111				
A. Ly		1	111		-	4.28.2	11:15
/							
		_			=		
		_			_		

Contact Us: 973-361-4252 Fax: 973-989-5288 Web: www.lalonllne.com

Chain of Custody Record

Integrated Analytical Labs 273 Franklin Road Randolph, NJ 07869

Customer Information	"		Reportir	Reporting Information	tion		Charge		Deliverables	rables	E	EDDs	Concentrations Expected
Company: S < S		REPORT TO:	S 388 88			15.00	24 hr - 100%		NJ, CT, PA	W	0	NJ SRP	Low Med High
Address:		Address:					48 hr - 75% 72 hr - 50%		Results Only (Lavel I)	□ ASP Category	Ä	NYSDEC EQUIS	Known Hazard:
			J	0			96 hr - 35% 5 day - 25%.	100001	_ f	ζ.	dde del 🗌	lab approved custom EDD	□ YES □ NO
-LE2 - 5 6 5 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1009	Attn:	1				6-9 day - 10%		Fair .	☐ ASP Category B*	№	NO EDD REQ'D	Describe:
Fax#;		FAX#						Turn-	Turn-Around Time (TAT)	ne (TAT)		Regula	Regulatory Requirement
Project Manager: P . / C		INVOICE TO:	300			3	Standard (10	business	Standard (10 business days) Verbal			New Jorsey	New York
EMAIL Address:		Address:					Rush/data needed Only	pe (peaco			10	SDM9 □	☐ AWQS (TOGS Table 1)
Project Name: NOUNG H	5						Hard Copy: Std 3 week	Std 3 we	출	Other - call for price	Т	No.	GWEL (TOGS Table 5)
Project Location (State):	, ,	Attn:					Petroleu	m Hydroc	arbons - Se	Petroleum Hydracarbons - Selection is REQUIRED		SRS	Part 375-6.8(a) - Unrestricted
Bottle Order #:		PO #	Ŋ	0 .0	5		☐ NJ EPH-DRO - Catagory 1	DRO - Cate		TAT for PHC, if	Γ̈́	☐ Ecological	Part 375-6.8(b) - Restricted
"Report to"/"Invoice To" same as above	above	Quote #					O NUEPH	NJ EPH-C40 - Catagory 2	FV.	О стетрн	100	№	CP-51 Table 2 of eg hection required)
Sampled by:			-33	Sample Matrix			☐ NJ EPH-Fractionalsd - Cat 2	Fractionate	d Cet 2	☐ DRO-8615		□ SPLP	Other States / Criteria
AL:	Equipment Rental	DW - Drinking Water WW - Waste Water GW - Groundwater CW - Groundwater	Water fater ater	OI - Oil S - Soil SED - Sediment	ent		TX 721	MALYTIC.	AL PARAME	ANALYTICAL PARAMETERS (please note if contingent	Continge	- (F	☐ Pennsylvania Act 2 ☐ CT RCSA 22a-133k1-k3
INFOF	NO	LIQ - Liquid (specify) M - Multiphasic	ecify)	SL - Sludge W - Wipe	sheer)	•) (1	1	9 '				☐ TSCA PCBs
Ci troil	000 th	Sampling	ling		*		2 S	10	フ				OTHER Regulatory Requirements -
	Deptil (it omy)	Date	Тітпе		containers	ł			,				Sample Specific Notes:
30-049	P Sac Miles	02.82.	60.6	ر ک	S		7)	8		134		
					LANGE TO STATE OF	- 100		-	Š.				
		1 4 4				100				377			
						6		1.70	100 PM			N. 25 P. 526	
					c								
AND SIZ NEW													
Samples previously analyzed by IAL?	Draw College	Container	10	Pre	Preservative (use code)	(epao es		193			e e e		FOR LAB USE ONLY
YES / NO		Code:		Contai	Container Type (use code)	(apoo es							100
Please print legibly and fill out completely. Samples cannot be a processed and the turnaround time to (TAT) will not start until any	1= None 2= HCl 3= HNO3 4= MeOH N= N2OH	A = Amber Glass B = Plastic C = Vial D = Glass	Special is	structions	2C Require	2 S	Special Instructions/QC Requirements & Comments:	neg		27-KJ	1	CICC - FI SDG #:	SDG #: 0878
, jo	6 = H2SO4 7 = Other	T = Terracore		inquished by (Signature and Company)	d Company		Date	Time	Received by	(Signature a	celved by (Signature and Company)	Dette 7 Time
	Carrier (check one):	:(eu	1	1	\		3=	72(1)	4)3		1		4134110 145
THE CLEANT HAS READ AND AGREEST TO BE BOUND	Client Courier	ourier Durier											
(found on rear of pink copy).	Tracking #:	JFS					1						
LAB COPIES - WHITE & YELLOW; CLIENT COPY - PHINK	Y - PINK			Certification IC	S: TNI (TNIO1	284); CT (P	1-0699); NJ (14)	51); NY (114	Certification IDs: TNI (TNI01284); CT (PH-0699); NJ (14751); NY (11402); PA (68-00773).	73).			

SAMPLE RECEIPT VERIFICATION

CASE NO: E 20 02898	CLIENT: 5+5
COOLER TEMPERATURE: 2° - 6°C:	(See Chain of Custody)
COC: COMPLETE/ INCOMPLETE	Comments
KEY ✓ = YES/NA	VOA received: Fincore IGW - Methanol
⇒ = NO	(check one) Terra Core No Preservative
✓ Bottles Intact	
✓ no-Missing Bottles ✓ no-Extra Bottles	
✓ Sufficient Sample Volume	
✓ no-headspace/bubbles in VOs✓ Labels intact/correct	
 ✓ pH Check (exclude VOs)¹ ✓ Correct bottles/preservative 	
Sufficient Holding/Prep Time ¹	
Multiphasic Sample Sample to be Subcontracted	
✓ Chain of Custody is Clear	
¹ All samples with "Analyze Immediately" holding times will the following tests: pH, Temperature, Free Residual Chlori	be analyzed by this laboratory past the holding time. This includes but is not limited to ne. Total Residual Chlorine, Dissolved Oxygen, Sulfite.
ADDITIONAL COMMENTS:	
	A .
SAMPLE(S) VERIFIED BY: INITIAL	DATE 4/28/20
CORRECTIVE ACTION REQUIRED	YES SEE BELOW) NO Y
If COC is NOT clear, STOP until you ge	t client to authorize/clarify work.
CLIENT NOTIFIED: YES	Date/ Time: NO NO
PROJECT CONTACT: SUBCONTRACTED LAB:	
DATE SHIPPED:	1911-01-01
ADDITIONAL COMMENTS:	
70172 + 31431	
VEDICIED/TAKEN BV: INITIAL	N.I. DATE 4/20/20

777 New Durham Rd., Edison, NJ 08817

109555

Special Requirements Preservative 1 = HCL_3 ; 2 = $NaOH_3$ = HNO_3 4 = H_2SO_4 ; 5 = $MeOH_3$; 6 = OtherReport Format Known Hazard: yes no Reduced / Level III 6 Business Days Concentrations Expected LOW MED FIIGH ANALYTICAL PARAMETERS / PRESERVATIVES *Prior to sample arrival, Lab notification is required. Other: Turnaround Time 2 wk COOLER TEMP. $1~\rm wk^{\star}$ Please print legibly and fill out completely. Samples cannot be processed and the turnaround time will not start until any ambiguities have been resolved. 72 hr* 48 hr* Verbal/Fax Hard Copy 24 hr* 72 hr* 123 EMAIL CONFIRMATION REQUIRED Total Cyanide (9012B) Containers REPORTING & BILLING tmalanga@jalonline.com Thomas Malanga Thomas Malanga Thomas Malanga 460-208555 Chain of Custody Matrix Soil Invoice to: 00:60 Contact; Report to: Time EMail to: Address: Address: Fax#: 4/28/20 Date Name: Integrated Analytical Laboratories LLC P0# Randolph, NJ 07869 273 Franklin Road Sample Depth (in Feet) SAMPLE INFORMATION 973-989-5288 973-361-4252 E20-02898 CLIENT & PROJECT Project Location (State): NJ 01 aldures Page 35 of 37 Project Manager: Reference ID#: Project Name: Telephone #: Address: Fax #:

CUSTODY LOG

Jane (2/1/1, 1/26 11		
700	Received by Lyff in L. Enhances 8/20 11.30	
R	Received by:	Lab Case #
	Received by:	PAGE:
		No. No. No. No.

OF

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab ID:		02898-001
Client ID:		20-049
Matrix:		Soil
Sampled Date		4/28/20
PARAMETER(Units)	Conc	Q MDL
Volatiles (Units)		(mg/Kg)
Dichlorodifluoromethane	ND	0.000419
Chloromethane	ND	0.00046
Vinyl chloride	ND	0.000458
Bromomethane	ND	0.000646
Chloroethane	ND	0.000514
Trichlorofluoromethane	ND	0.000434
Acrolein	ND	0.00524
I,1-Dichloroethene	ND	0.000441
Acetone	ND	0.00276
Carbon disulfide	ND ND	0.00273
Methylene chloride	ND ND	0.00273
Acrylonitrile	ND	0.0021
tert-Butyl alcohol (TBA)	ND ND	0.00404
trans-1,2-Dichloroethene	ND ND	0.000432
Methyl tert-butyl ether (MTBE)	ND ND	0.000432
1,1-Dichloroethane	ND ND	0.000321
cis-1,2-Dichloroethene	ND ND	0.000374
2-Butanone (MEK)	ND ND	0.00103
Bromochloromethane	ND ND	0.00103
Chloroform	ND ND	0.000608
	ND ND	0.000306
1,1,1-Trichloroethane		
Carbon tetrachloride	ND	0.000298
1,2-Dichloroethane (EDC)	ND	0.000409
Benzene	ND	0.000234
Trichloroethene	ND	0.000315
1,2-Dichloropropane	ND	0.000253
1,4-Dioxane	ND	0.039
Bromodichloromethane	ND	0.000216
cis-1,3-Dichloropropene	ND	0.000232
4-Methyl-2-pentanone (MIBK)	ND	0.000793
Toluene	ND	0.000247
trans-1,3-Dichloropropene	ND	0.00028
1,1,2-Trichloroethane	ND	0.000332
Tetrachloroethene	ND	0.000404
2-Hexanone	ND	0.00166
Dibromochloromethane	ND	0.000297
1,2-Dibromoethane (EDB)	ND	0.000214
Chlorobenzene	ND	0.000246
Ethylbenzene	ND	0.000298
Total Xylenes	ND	0.00116
Styrene	ND	0.00036
Bromoform	ND	0.000375
Isopropylbenzene	ND	0.000367
1,1,2,2-Tetrachloroethane	ND	0.000473
n-Propylbenzene	ND	0.0003

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab ID: Client ID: Matrix: Sampled Date		02898-001 20-049 Soil 4/28/20
PARAMETER(Units)	Conc	Q MDL
Volatiles (Units)		(mg/Kg)
1,3,5-Trimethylbenzene	ND	0.000488
tert-Butylbenzene	ND	0.000345
1,2,4-Trimethylbenzene	ND	0.000558
sec-Butylbenzene	ND	0.000359
1,3-Dichlorobenzene	ND	0.000319
4-Isopropyltoluene	ND	0.000415
1,4-Dichlorobenzene	ND	0.000319
n-Butylbenzene	ND	0.000446
1,2-Dichlorobenzene	ND	0.0003
1,2-Dibromo-3-chloropropane	ND	0.000596
1,2,4-Trichlorobenzene	ND	0.000423
1,2,3-Trichlorobenzene	ND	0.000427
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.000477
Methyl acetate	ND	0.000332
Cyclohexane	ND	0.000491
Methylcyclohexane	ND	0.000314
1,3-Dichloropropene (cis- and trans-)	ND	0.00028
		0.00020
TOTAL TIC's:	ND	
Semivolatiles (Units)		(mg/Kg)
N-Nitrosodimethylamine	ND	0.028
Benzaldehyde	ND	0.027
Phenol	ND	0.032
Aniline	ND	0.021
Bis(2-chloroethyl) ether	ND	0.026
2-Chlorophenol	ND	0.026
		0.032
Benzyl alcohol	ND	0.032
•	ND ND	0.020
Benzyl alcohol 2-Methylphenol 2,2'-Oxybis(1-Chloropropane)		
2-Methylphenol 2,2'-Oxybis(1-Chloropropane)	ND	0.020
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol **	ND ND	0.020 0.032
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine	ND ND ND	0.020 0.032 0.023
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone	ND ND ND ND	0.020 0.032 0.023 0.023
2-Methylphenol	ND ND ND ND ND	0.020 0.032 0.023 0.023 0.028
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane	ND ND ND ND ND	0.020 0.032 0.023 0.023 0.028 0.027
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene	ND ND ND ND ND ND	0.020 0.032 0.023 0.023 0.028 0.027 0.022
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol	ND	0.020 0.032 0.023 0.023 0.028 0.027 0.022 0.024 0.030
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol	ND	0.020 0.032 0.023 0.023 0.028 0.027 0.022 0.024 0.030 0.020
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane	ND N	0.020 0.032 0.023 0.023 0.028 0.027 0.022 0.024 0.030 0.020 0.027
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid	ND N	0.020 0.032 0.023 0.023 0.028 0.027 0.022 0.024 0.030 0.020 0.027 0.028
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol	ND N	0.020 0.032 0.023 0.023 0.028 0.027 0.022 0.024 0.030 0.020 0.027 0.028 0.028
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol Naphthalene	ND N	0.020 0.032 0.023 0.023 0.028 0.027 0.022 0.024 0.030 0.020 0.027 0.028 0.026
2-Methylphenol 2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol	ND N	0.020 0.032 0.023 0.023 0.028 0.027 0.022 0.024 0.030 0.020 0.027 0.028 0.028

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

	Lab ID:		02898-001	
	Client ID:		20-049	
	Matrix:		Soil	
5	Sampled Date		4/28/20	
PARAMETER(Units)	, P	Conc	Q	MDL
Semivolatiles (Units)			(mg/Kg)	
4-Chloro-3-methylphenol		ND		0.023
2-Methylnaphthalene		ND		0.023
Hexachlorocyclopentadiene		ND		0.021
2,4,6-Trichlorophenol		ND		0.026
2,4,5-Trichlorophenol		ND ND		0.028
1,1'-Biphenyl		ND ND		0.028
2-Chloronaphthalene		ND ND		0.028
2-Nitroaniline		ND ND		0.025
		ND ND		0.023
Dimethyl phthalate 2,6-Dinitrotoluene		ND ND		0.024
Acenaphthylene		ND ND		0.032
3-Nitroaniline		ND ND		0.026
		ND ND		
Acenaphthene				0.027
2,4-Dinitrophenol		ND		0.031
4-Nitrophenol		ND		0.030
2,4-Dinitrotoluene		ND		0.029
Dibenzofuran		ND		0.025
Diethyl phthalate		ND		0.020
Fluorene		ND		0.028
4-Chlorophenyl phenyl ether		ND		0.027
4-Nitroaniline		ND		0.021
1,2,4,5-Tetrachlorobenzene		ND		0.023
2,3,4,6-Tetrachlorophenol		ND		0.028
4,6-Dinitro-2-methylphenol		ND		0.032
N-Nitrosodiphenylamine		ND		0.031
1,2-Diphenylhydrazine		ND		0.032
4-Bromophenyl phenyl ether		ND		0.023
Hexachlorobenzene		ND		0.023
Atrazine		ND		0.025
Pentachlorophenol		ND		0.022
Phenanthrene		ND		0.031
Anthracene		ND		0.032
Carbazole		ND		0.029
Di-n-butyl phthalate		ND		0.028
Fluoranthene		ND		0.032
Benzidine		ND		0.025
Pyrene		ND		0.030
Butyl benzyl phthalate		ND		0.031
3,3'-Dichlorobenzidine		ND		0.029
Benzo[a]anthracene		ND		0.020
Chrysene		ND		0.031
Bis(2-ethylhexyl) phthalate		ND		0.030
Di-n-octyl phthalate		ND		0.031
Benzo[b]fluoranthene		ND		0.032
Benzo[k]fluoranthene		ND		0.028

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab Case No.: E20		02000 001
Lab ID:		02898-001
Client ID:		20-049
Matrix:		Soil
Sampled Date	Come	4/28/20
PARAMETER(Units)	Conc	Q MDL
Semivolatiles (Units)		(mg/Kg)
Benzo[a]pyrene	ND	0.029
Indeno[1,2,3-cd]pyrene	ND	0.032
Dibenz[a,h]anthracene	ND	0.030
Benzo[g,h,i]perylene	ND	0.032
Dinitrotoluene (2,4- and 2,6-)	ND	0.032
TOTAL TIC's:	ND	
PCB's (Units)		(mg/Kg)
Aroclor-1016	ND	0.00131
Aroclor-1221	ND	0.00131
Aroclor-1232	ND	0.00131
Aroclor-1242	ND	0.00131
Aroclor-1248	ND	0.00131
Aroclor-1254	ND	0.00131
Aroclor-1260	ND	0.00131
Aroclor-1262	ND	0.00131
Aroclor-1268	ND	0.00131
PCBs	ND	0.00131
Pesticides (Units)		(mg/Kg)
alpha-BHC	ND	0.000327
beta-BHC	ND	0.000327
gamma-BHC (Lindane)	ND	0.000327
delta-BHC	ND	0.000327
Heptachlor	ND	0.000327
Aldrin	ND	0.000327
Heptachlor epoxide	ND	0.000327
Endosulfan I	ND	0.000327
4,4'-DDE	ND	0.000327
Dieldrin	ND	0.000327
Endrin	ND	0.000327
Endosulfan II	ND	0.000327
4,4'-DDD	ND	0.000327
Endrin aldehyde	ND	0.000327
Endosulfan sulfate	ND	0.000327
4,4'-DDT	ND	0.000327
Endrin ketone	ND	0.000327
Methoxychlor	ND	0.000327
alpha-Chlordane	ND	0.000327
gamma-Chlordane	ND	0.000327
Toxaphene	ND	0.00392
Endosulfan (I and II)	ND	0.000327
Chlordane (alpha and gamma)	ND	0.000327

Chlordane (alpha and gamma)

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

	Lab ID:		2898-	-001
	Client ID:		20-0	
	Matrix:		Soi	
	Sampled Date		4/28/	
PARAMETER(Units)	Sumpled Date	Conc	Q	MDL
Herbicides (Units)			(mg/k	(g)
Dalapon		ND		0.0066
Dicamba		ND		0.0066
2,4-D		ND		0.0066
2,4,5-TP (Silvex)		ND		0.0066
2,4,5-T		ND		0.0066
2,4-DB		ND		0.0066
Dinoseb		ND		0.0066
NJ-EPH-C40 (Units)			(mg/K	(g)
C9-C40		ND		19.5
Alcohols (Units)			(mg/K	(g)
Methanol		ND		1.91
Metals (Units)			(mg/K	(g)
Aluminum		2040		2.08
Antimony		0.360	J	0.208
Arsenic		1.14		0.156
Barium		8.52		0.260
Beryllium		0.674		0.156
Cadmium		ND		0.313
Calcium		3740		15.6
Chromium		3.72		0.260
Cobalt		3.70		0.156
Copper		9.66		0.365
Iron		9670		15.6
Lead		2.02		0.260
Magnesium		2260		15.6
Manganese		65.7		0.365
Mercury		ND		0.010
Nickel		4.31		0.365
Potassium		1240		20.8
Selenium	S	4.01		1.56
Silver		ND		0.313
Sodium		161		20.8
Thallium		0.455	J	0.260
Vanadium		7.69	-	0.260
Zinc		10.6		1.04

ND = Analyzed for but Not Detected at the MDL

J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

Client: S & S Environmental Project: MOUNT HOPE Lab Case No.: E20-02898

Lab ID: Client ID: Matrix:		2898- 20-04 Soil	19
Sampled Date		4/28/	20
PARAMETER(Units)	Conc	Q	MDL
General Analytical (Units)			98
Hexavalent Chromium(mg/Kg)	ND		0.379
pH/Corrosivity(SU)	8.47		NA
Trivalent (III) Chromium(mg/Kg)	3.72		0.379
Subcontracted Data (Units)	((mg/K	g)
	*		*

ND = Analyzed for but Not Detected at the MDL

^{*}Subcontracted Results for Total Cyanide (9012B) by Test America -Edison are available in the Subcontracted Report section

TestAmerica Laboratories, Inc.

Eurofins TestAmerica, Edison

SUMMARY OF ANALYTICAL RESULTS: 460-208555-1

Job Description: E20-02898

or:

Integrated Analytical Laboratories LLC PO BOX 8026

Parsippany, New Jersey 07054

MDL 0.12 E20-02898-001 04/28/2020 09:00:00 460-208555 Result Q 0.12 U F1 IGW Screening Nov_2013 NJDEP NJ_SRS7_26D_Tbl1B Non-Residential Sept_2017 089 NJ SRS7_26D_Tbl1A Residential Sept_2017 47 Cyanide, Total (mg/kg) Client ID Lab Sample ID Sampling Date Matrix SOIL BY 9012B

F1 : MS and/or MSD recovery exceeds control limits.

U : Indicates the analyte was analyzed for but not detected.

Senior Project Manager

Lab Contact: Jill Miller (484)685-0871

Page 1 of 1

Sample #:		QCN	NJDEP SOIL REMEDIATION	NOIL		20-049	-0-	
Field ID:			STANDARDS					
Lab ID:		Residential	Non-Res	Default IGW		02898-001		
Date Sampled:		SRS	SRS	Screening		04/28/2020		
Depth(ft);	CAS	(mg/Kg)	(mg/Kg)	Level (mg/Kg)				
Volatiles (mg/Kg)					Conc	а 4	MDL	
Dichlorodifluoromethane	75-71-8	490	230000	39	QN	0.00108	0.000419	
Chloromethane	74-87-3	4	12	SN	QN	0.00108	0.00046	
Vinyl chloride	75-01-4	0.7	2	0.005	Q	0.00108	0.000458	
Bromomethane	74-83-9	25	59	0.04	Q	0.00108	0.000646	
Chloroethane	75-00-3	220	1100	NS	2	0.00108	0.000514	
Trichlorofluoromethane	75-69-4	23000	340000	34	Q	0.00108	0.000434	
Acrolein	107-02-8	0.5	-	0.5	Q	0.022	0.00524	
1,1-Dichloroethene	75-35-4	11	150	0.008	Q	0.00108	0.000441	
Acetone	67-64-1	70000	NS	19	QN	0.011	0.00276	
Carbon disulfide	75-15-0	7800	110000	9	QN	0.00108	0.000273	
Methylene chloride	75-09-2	46	230	0.01	Q	0.00216	0.0021	
Acrylonitrile	107-13-1	6.0	က	0.5	Q	0.022	0.00464	
tert-Butyl alcohol (TBA)	75-65-0	1400	11000	0.3	Q	0.00432	0.0011	
trans-1,2-Dichloroethene	156-60-5	300	720	9.0	Q	0.00108	0.000432	
Methyl tert-butyl ether (MTBE)	1634-04-4	110	320	0.2	QN	0.00108	0.000321	
1,1-Dichloroethane	75-34-3	ω	24	0.2	Q	0.00108	0.000394	
cis-1,2-Dichloroethene	156-59-2	230	260	0.3	Q	0.00108	0.000374	
2-Butanone (MEK)	78-93-3	3100	44000	6.0	Q	0.00432	0.00103	
Bromochloromethane	74-97-5	SN	SN	NS	2	0.00108	0.000314	
Chloroform	67-66-3	9.0	2	0.4	Q.	0.00108	0.000608	
1,1,1-Trichloroethane	71-55-6	160000	SN	0.3	Q	0.00108	0.000306	
Carbon tetrachloride	56-23-5	2	4	0.005	9	0.00108	0.000298	
1,2-Dichloroethane (EDC)	107-06-2	6.0	က	0.005	Q	0.00108	0.000409	
Benzene	71-43-2	2	ß	0.005	2	0.00108	0.000234	
Trichloroethene	79-01-6	က	10	0.01	2	0.00108	0.000315	
1,2-Dichloropropane	78-87-5	2	ເດ	0.005	2	0.00108	0.000253	
1,4-Dioxane	123-91-1	NS	SN	SN	2	0.216	0.039	
Bromodichloromethane	75-27-4	-	က	0.005	2	0.00108	0.000216	
cis-1,3-Dichloropropene	10061-01-5	SN	SN	SN	Q	0.00108	0.000232	
4-Methyl-2-pentanone (MIBK)	108-10-1	SN	SN	SN	2	0.00216	0.000793	
Toluene	108-88-3	6300	91000	7	Q	0.00108	0.000247	
trans-1,3-Dichloropropene	10061-02-6	SN	SN	SN	Q	0.00108	0.00028	
1,1,2-Trichloroethane	2-00-62	2	9	0.02	Q	0.00108	0.000332	
Tetrachloroethene	127-18-4	43	1500	0.005	2	0.00108	0.000404	
2-Hexanone	591-78-6	SN	SN	NS	Q	0.00216	0.00166	
Dibromochloromethane	124-48-1	က	œ	0.005	2	0.00108	0.000297	
1,2-Dibromoethane (EDB)	106-93-4	0.008	0.04	0.005	Q	0.00108	0.000214	
Chlorobenzene	108-90-7	510	7400	9.0	Q	0.00108	0.000246	

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

Ethylbenzene	100-41-4	7800	110000	13	Q	0.00108	0.000298
Total Xylenes	1330-20-7	12000	170000	19	9	0.00216	0.00116
Styrene	100-42-5	06	260	က	2	0.00108	0.00036
Bromoform	75-25-2	81	280	0.03	Q	0.00108	0.000375
Isopropylbenzene	98-82-8	NS	SN	SN	Q	0.00108	0.000367
1,1,2,2-Tetrachloroethane	79-34-5	-	က	0.007	Q	0.00108	0.000473
n-Propylbenzene	103-65-1	NS	SN	SN	Q	0.00108	0.0003
1,3,5-Trimethylbenzene	108-67-8	NS	NS	SN	9	0.00108	0.000488
tert-Butylbenzene	9-90-86	NS	SN	SN	2	0.00108	0.000345
1,2,4-Trimethylbenzene	95-63-6	NS	NS	SN	2	0.00108	0.000558
sec-Butylbenzene	135-98-8	SN	SN	SN	2	0.00108	0.000359
1,3-Dichlorobenzene	541-73-1	5300	29000	19	2	0.00108	0.000319
4-Isopropyltoluene	9-87-6	NS	SN	SN	2	0.00108	0.000415
1,4-Dichlorobenzene	106-46-7	ro.	13	2	Q	0.00108	0.000319
n-Butylbenzene	104-51-8	SN	NS	SN	Q	0.00108	0.000446
1,2-Dichlorobenzene	95-50-1	5300	29000	17	Q	0.00108	0.0003
1,2-Dibromo-3-chloropropane	96-12-8	80.0	0.5	0.005	2	0.00108	0.000596
1,2,4-Trichlorobenzene	120-82-1	73	820	0.7	Q	0.00108	0.000423
1,2,3-Trichlorobenzene	87-61-6	NS	SN	SN	Q	0.00108	0.000427
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NS	SN	SN	2	0.00108	0.000477
Methyl acetate	79-20-9	78000	SN	22	Q	0.00216	0.000332
Cyclohexane	110-82-7	NS	NS	SN	Q	0.00108	0.000491
Methylcyclohexane	108-87-2	NS	NS	SN	Q	0.00108	0.000314
1,3-Dichloropropene (cis- and trans-)	542-75-6	2	7	0.005	Q	0.00108	0.00028
TOTAL TIC'S:		NS	NS	NS	QV		

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

Semivolatiles (mg/Kg)					Conc	ø	RL	MDL	
N-Nitrosodimethylamine	62-75-9	0.7	0.7	0.7	Q	o.	0.033	0.028	
Benzaldehyde	100-52-7	6100	68000	SN	Q	0	0.033	0.027	
Phenol	108-95-2	18000	210000	∞	Q	o	0.033	0.032	
Aniline	62-53-3	NS	NS	NS	2	o	0.033	0.021	
Bis(2-chloroethyl) ether	111-44-4	0.4	2	0.2	2	Ö	0.033	0.026	
2-Chlorophenol	95-57-8	310	2200	0.8	QV	0	0.033	0.026	
Benzyl alcohol	100-51-6	NS	SN	SN	Q	0	0.033	0.032	
2-Methylphenol	95-48-7	310	3400	NS	Q	O.	0.033	0.020	
2,2'-Oxybis(1-Chloropropane)	108-60-1	23	29	r.	ð	o	0.033	0.032	
4-Methylphenol **	106-44-5	31	340	SN	Q	o.	0.033	0.023	
N-Nitrosodi-n-propylamine	621-64-7	0.2	0.3	0.2	9	0	0.033	0.023	
Acetophenone	98-86-2	2	S	က	Q	0	0.033	0.028	
Hexachloroethane	67-72-1	12	48	0.2	9	0	0.033	0.027	
Nitrobenzene	98-95-3	ഹ	41	0.2	Q	0	0.033	0.022	
Isophorone	78-59-1	510	2000	0.2	Q	0	0.033	0.024	
2-Nitrophenol	88-75-5	NS	NS	NS	Q	o	0.033	0.030	
2,4-Dimethylphenol	105-67-9	1200	14000		Q	Ö	0.033	0.020	
Bis(2-chloroethoxy) methane	111-91-1	NS	NS	SN	Q	o	0.033	0.027	
Benzoic acid	65-85-0	NS	SN	NS	2	o	0.328	0.028	
2,4-Dichlorophenol	120-83-2	180	2100	0.2	Q	0	0.033	0.026	
Naphthalene	91-20-3	9	17	25	Q	ō	0.033	0.026	
4-Chloroaniline	106-47-8	NS	SN	NS	Q	0	0.033	0.023	
Hexachlorobutadiene	87-68-3	9	25	6.0	2	0	0.033	0.021	
Caprolactam	105-60-2	31000	340000	12	2	0	0.033	0.025	
4-Chloro-3-methylphenol	29-20-7	NS	NS	SN	2	0	0.033	0.023	
2-Methylnaphthalene	91-57-6	230	2400	80	2	Ö	0.033	0.021	
Hexachlorocyclopentadiene	77-47-4	45	110	320	2	Ö	0.033	0.028	
2,4,6-Trichlorophenol	88-06-2	19	74	0.2	2	o	0.033	0.026	
2,4,5-Trichlorophenol	95-95-4	6100	00089	89	2	Ö	0.033	0.028	
1,1'-Biphenyl	92-52-4	61	240	140	9	o	0.033	0.028	
2-Chloronaphthalene	91-58-7	NS	SN	SN	Q	o	0.033	0.025	
2-Nitroaniline	88-74-4	39	23000	SN	S	o	0.033	0.025	
Dimethyl phthalate	131-11-3	NS	NS	SN	2	Ö	0.033	0.024	
2,6-Dinitrotoluene	606-20-2	0.7	က	SN	Q	0	0.033	0.032	
Acenaphthylene	208-96-8	NS	300000	NS	2	Ö	0.033	0.026	
3-Nitroaniline	89-09-2	NS	SN	SN	Q	ö	0.033	0.025	
Acenaphthene	83-32-9	3400	37000	110	Q	ö	0.033	0.027	
2,4-Dinitrophenol	51-28-5	120	1400	0.3	Q	Ö	0.033	0.031	
4-Nitrophenol	100-02-7	SN	NS	NS	Q	ō	0.033	0:030	
2,4-Dinitrotoluene	121-14-2	0.7	ო	NS	Q	Ö	0.033	0.029	
Dibenzofuran	132-64-9	NS	NS	NS	2	Ö	0.033	0.025	
Diethyl phthalate	84-66-2	49000	550000	88	Q	0	0.033	0.020	
Fluorene	86-73-7	2300	24000	170	Q	Ö	0.033	0.028	
4-Chlorophenyl phenyl ether	7005-72-3	SN	SN	SN	2	Ö	0.033	0.027	
4-Nitroaniline	100-01-6	NS	SN	NS	Q	ō	0.033	1000	

S S Environmental Project Name: MOUNT HOPE IAI, SDG No:E20-02898

1,2,4,5-Tetrachlorobenzene	95-94-3	SN	SN	NS	QN	0.033	0.023	
2,3,4,6-Tetrachlorophenol	58-90-2	NS	NS	SN	Q	0.033	0.028	
4,6-Dinitro-2-methylphenol	534-52-1	9	89	0.3	Q	0.033	0.032	
N-Nitrosodiphenylamine	86-30-6	66	390	9.0	2	0.033	0.031	
1,2-Diphenylhydrazine	122-66-7	0.7	2	0.7	Q	0.033	0.032	
4-Bromophenyl phenyl ether	101-55-3	SN	NS	NS	Q	0.033	0.023	
Hexachlorobenzene	118-74-1	0.3	1	0.2	Q	0.033	0.023	
Atrazine	1912-24-9	210	2400	0.2	2	0.033	0.025	
Pentachlorophenol	87-86-5	6.0	က	0.3	2	0.033	0.022	
Phenanthrene	85-01-8	NS	300000	SN	2	0.033	0.031	
Anthracene	120-12-7	17000	30000	2400	2	0.033	0.032	
Carbazole	86-74-8	24	96	SN	2	0.033	0.029	
Di-n-butyl phthalate	84-74-2	6100	68000	760	2	0.033	0.028	
Fluoranthene	206-44-0	2300	24000	1300	2	0.033	0.032	
Benzidine	92-87-5	0.7	0.7	0.7	9	0.033	0.025	
Pyrene	129-00-0	1700	18000	840	2	0,033	0.030	
Butyl benzyl phthalate	85-68-7	1200	14000	230	2	0.033	0.031	
3,3'-Dichlorobenzidine	91-94-1	-	4	0.2	Q	0.033	0.029	
Benzo[a]anthracene	56-55-3	ro.	17	8.0	9	0.033	0.020	
Chrysene	218-01-9	450	1700	80	2	0.033	0.031	
Bis(2-ethylhexyl) phthalate	117-81-7	35	140	1200	2	0.033	0:030	
Di-n-octyl phthalate	117-84-0	2400	27000	3300	9	0.033	0.031	
Benzo[b]fluoranthene	205-99-2	2	17	2	2	0.033	0.032	
Benzo[k]fluoranthene	207-08-9	45	170	25	9	0.033	0.028	
Benzo[a]pyrene	50-32-8	0.5	2	0.2	2	0.033	0.029	
Indeno[1,2,3-cd]pyrene	193-39-5	22	17	7	2	0.033	0.032	
Dibenz[a,h]anthracene	53-70-3	0.5	2	0.8	2	0.033	0:030	
Benzo[g,h,i]perylene	191-24-2	380000	30000	NS	2	0.033	0.032	
Dinitrotoluene (2,4- and 2,6-)	25321-14-6	0.7	3	0.2	2	0.033	0.032	
TOTAL TIC'S:		SN	NS	SN	2		AN A	

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

CB's (mg/Kg)					Conc	a	몺	MDL
Aroclor-1016	12674-11-2	NS	NS	NS	Q	0.0	0327	0.00131
Aroclor-1221	11104-28-2	NS	NS	NS	Q	0.0	0327	0.00131
Aroclor-1232	11141-16-5	NS	NS	NS	Q	0.0	0327	0.00131
Aroclor-1242	53469-21-9	NS	NS	NS	2	0.0	0327	0.00131
Aroclor-1248	12672-29-6	NS	NS	NS	Q	0.0	0327	0.00131
Aroclor-1254	11097-69-1	NS	NS	NS	2	0.0	0327	0.00131
Aroclor-1260	11096-82-5	NS	SN	NS	2	0.0	0.00327	0.00131
Aroclor-1262	37324-23-5	NS	SN	NS	2	0.0	0327	0.00131
Aroclor-1268	11100-14-4	NS	NS	SN	Q	0.0	0327	0.00131
PCBs	1336-36-3	0.2	-	0.2	2	0.0	0327	0.00131

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

Pesticides (mg/Kg)					Conc	o R		MDL ;	
alpha-BHC	319-84-6	0.1	0.5	0.002	Q	0.000654	0654	0.000327	
beta-BHC	319-85-7	4.0	2	0.002	Q	0.000654)654	0.000327	
gamma-BHC (Lindane)	58-89-9	0.4	2	0.002	Q	0.000654	1654	0.000327	
delta-BHC	319-86-8	NS	SN	SN	Q	0.000654	1654	0.000327	
Heptachlor	76-44-8	0.1	0.7	0.5	Q	0.000654	0654	0.000327	
Aldrin	309-00-2	0.04	0.2	0.2	Q	0.000654	0654	0.000327	
Heptachlor epoxide	1024-57-3	0.07	0.3	0.01	QN	0.000654	1654	0.000327	
Endosulfan I	9-86-656	NS	NS	SN	Q	0.000654)654	0.000327	
4,4'-DDE	72-55-9	2	6	18	Q	0.000654	9654	0.000327	
Dieldrin	60-57-1	0.04	0.2	0.003	Q	0.000654)654	0.000327	
Endrin	72-20-8	23	340	•	Q	0.000654)654	0.000327	
Endosulfan II	33213-65-9	SN	SN	SN	2	0.000654	9654	0.000327	
4,4'-DDD	72-54-8	က	13	4	9	0.000654	9654	0.000327	
Endrin aldehyde	7421-93-4	NS	SN	NS	Q	0.000654	9654	0.000327	
Endosulfan sulfate	1031-07-8	470	0089	2	Q	0.000654	9654	0.000327	
4,4'-DDT	50-29-3	2	œ	11	Q	0.000654	9654	0.000327	
Endrin ketone	53494-70-5	NS	NS	SN	Q	0.000654	9654	0.000327	
Methoxychlor	72-43-5	390	5700	160	Q	0.000654	9654	0.000327	
alpha-Chlordane	5103-71-9	NS	SN	NS	Q	0.000654	9654	0.000327	
gamma-Chlordane	5103-74-2	NS	SN	SN	Q	0.000654	9654	0.000327]	
Toxaphene	8001-35-2	9.0	က	0.3	2	0.00818	818	0.00392	
Endosulfan (I and II)	115-29-7	470	0089	4	Q	0.000654	1654	0.000327	
Chlordane (alpha and gamma)	57-74-9	0.2	-	0.05	2	0.000654	9654	0.000327	

NJ-EPH-C40 (mg/Kg)					Conc	a	W	MDL
9-040	IAI COCAN	UN N	ON.	OIA	2	07	1.4	7

S S Environmental Project Name: MOUNT HOPE IAL SDG No:E20-02898

Metals (mg/Kg)					Conc	o R	 	MDL	
Aluminum	7429-90-5	78000	NS	0009	2040	5.3	21	2.08	
Antimony	7440-36-0	31	450	9	0.360	J 0.521	121	0.208	
Arsenic	7440-38-2	19	19	19	1.14	0.5	521	0.156	
Barium	7440-39-3	16000	29000	2100	8.52	0.5	521	0.260	
Beryllium	7440-41-7	16	140	0.7	0.674	0.5	521	0.156	
Cadmium	7440-43-9	78	78	2	Q	0.5	521	0.313	
Calcium	7440-70-2	NS	NS	NS	3740	52	7:	15.6	
Chromium	7440-47-3	SN	NS	NS	3.72	0.5	521	0.260	
Cobalt	7440-48-4	1600	590	06	3.70	0.5	121	0.156	
Copper	7440-50-8	3100	45000	11000	99.6	0.5	121	0.365	
Iron	7439-89-6	SN	SN	NS	9670	52	Σ	15.6	
Lead	7439-92-1	400	800	06	2.02	0.5	21	0.260	
Magnesium	7439-95-4	NS	NS	SN	2260	52.1	_	15.6	
Manganese	7439-96-5	11000	2900	65	65.7	0.521	121	0.365	
Mercury	7439-97-6	23	65	0.1	Q.	0.0	0.025	0.010	
Nickel	7440-02-0	1600	23000	48	4.31	0.521	121	0.365	
Potassium	7440-09-7'	SN	SN	NS	1240	52	_	20.8	
Selenium	7782-49-2	390	5700	11	4.01	3.6	95	1.56	
Silver	7440-22-4	390	5700	-	2	0.5	121	0.313	
Sodium	7440-23-5	NS	NS	SN	161	52	7.	20.8	
Thallium	7440-28-0	withdrawn	withdrawn	က	0.455	J 0.5	121	0.260	
Vanadium	7440-62-2	78	1100	SN	7.69	0.5	21	0.260	
Zinc	7440-66-6	23000	110000	930	10.6	5.21	21	1 04	

General Analytical					Conc	a	ح	MDL	
Hexavalent Chromium-mg/Kg	18540-29-9	240	20	NS	2		1.00	0.379	
pH/Corrosivity-SU	SRP 6	NS	NS	NS	8.47		¥	¥ X	
Trivalent (III) Chromium-mg/Kg	16065-83-1	120000	SN	SN	3.72		1.00	0.379	

Subcontracted Data					Conc	a	ͳ	MDL
		SN	SN	SN	<i>~</i>		۰.	-
NJDEP Soil Remediation Standards: Remediation Standards N.J.A.C. 7:26D, May 2012; Amended Sept 2017	mediation Standards N.	J.A.C. 7:26D, May 207	12; Amended Sept 201	7				
BOLD Conc	Indicates a concent	ndicates a concentration that exceeds applicable criteria.	plicable criteria.					
BOLD RL	Indicates RL that ex	Indicates RL that exceeds applicable criteria,	ria,					
BOLD MDL	Indicates MDL that	exceeds applicable criteria.	iteria.					
NS = No Standard Available								-
~ = Sample not analyzed for								
ND = Analyzed for but Not Detected at the MDL	ie MDL							
J = Concentration detected at a value below the RL and above t	RL and above t	he MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.	pounds. For non-targ	et compounds (i.e.	. TICs), qualifie	er indicate	es estimat	ed concentrations
? = Results not available								
Subcontracted Results for Total Cyanide (9012B) by Test America -Edison are available in the Subcontracted Report section	(9012B) by Test Ameri	ca -Edison are availab	le in the Subcontracte	d Report section				

S & S ENVIRONMENTAL SCIENCES, INC.

Environmental Engineering, Testing and Consultation

98 Sand Park Road, Cedar Grove, NJ 07009 Tel (973) 857-7188 Fax (973) 239-8380

> Kamil Sor, Ph.D. Orhun Sor, P.E. Atilla Sencar, P.E.

This report is the confidential property of the Client, and information contained may not be published or reproduced without our written permission.

Client:	Tilcon New Y	ork, Inc.			
Project:	Pompton Lak	es, NJ (NJDEP-SRS	5)		
Subject:	Laboratory Ar	nalysis of Aggregate	Sample (Quar	ry Fines)	
Job No.:	06E41	Report Number:	20-E-62	Date:	5/21/2020

We present herewith the laboratory test results of an aggregate sample (identified as Quarry Fines) delivered to our laboratory on April 28, 2020. The sample was collected by a representative of Tilcon NY, on the same day.

As requested, the aggregate sample was analyzed for the U.S. EPA Target Compound List (TCL)+30/Target Analyte List (TAL) parameters, Extractable Petroleum Hydrocarbons (EPH), pH, and Hexavalent Chromium. The analyses were performed by Integrated Analytical Laboratories, LLC (IAL) (NJDEP Lab ID No. 14751). The copies of the IAL/S&S sample chain-of-custody forms, the preliminary IAL laboratory summary report and NJDEP-SRS comparison tables are attached.

Review of the laboratory data and comparison of the sample test results to the NJDEP Residential Direct Contact Soil Remediation Standards (RDCSRS) indicated that the aggregate sample **meet** the **NJDEP-RDCSRS**.

If there are any questions or if we can be of further assistance in this matter, please contact us.

Very truly yours

S & S ENVIRONMENTAL SCIENCES, INC.

Kamil Sor, Ph.D.

President

KS/ag

Attachments:

(1) Sample Chain-of-Custody Forms, Laboratory Summary Reports, and NJDEP-SRS Comparison Tables

cc: (1) Client

Steve O'Reilly

email: soreilly@tilconny.com

S&S ENVIRONMENTAL SCIENCES, INC.

Environmental Engineering, Testing and Consultation

98 Sand Park Rad, Cedar Grove, NJ 07009 Tel (973) 857-7188 Fax (973) 239-6380

NJDEP Lab Certification No. 07073

1L(on

CLIENT:

SAMPLE CHAIN OF CUSTODY

DATE:

							Control of the contro
ADDRESS:					SSES JOE	NO.	
CONTACT:					TEL. #:		
PROJECT:	Pompt	mm hale	CL. NT		PROJECT	LAB ID #:	20.048
	*						
SAMPLE NUMBER	SAMPLING DATE	SAMPLING TIME	SAMPLE TYPE	NO. OF BOTTLES	AN	ALYSES RE	QUESTED
20048	4-28:20	10:05	brah	BOTTLES	N 24 . N	T Cle.	. 1/1/
	1-4-6-5	10,03	1		10 1 10	7 6160	711
		-1° -27° - 1°0,					
	7			· · · · · · · · · · · · · · · · · · ·			
Comments:							
oomments.							
PRESER	RVATIVE						
Cooled at 4°C?	d		pH Meter	B			I
+CI			No.:	Reading	T°C	Time	Analyst
INO ₃			рН				
12804			pH Dup.				
IaOH							
la ₂ S ₂ O ₃							
Other							
Sampled By:	S. O.						
RELINQUIS	PUED DV.		DESER/E				
RELINGUIS	PHED BY:	3	RECEIVE	ED BY:		DATE	AND TIME:
De	u/		1166		L	12820	11:10
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	-	100	1 11		100		11.10
		122			7_		
		_					

Chain of

Contact Us: 973-361-4252 Fax: 973-989-5288 Web: www.ialonline.com

# Chain of Custody Record

Concentrations Expected High Part 375-6.8(a) - Unrestricted CP-51 Table 2 or Thelection OTHER Regulatory Requirements specify in comments 2 Part 375-6.8(b) - Restricted ☐ CT RCSA 22a-133k1-k3 Sample Specific Notes: AWGS (TOGS Table 1) GWEL (TOGS Table 5) Other States / Criteria ☐ Pennsylvania Act 2 Known Hazard: FOR LAB USE ONLY Regulatory Requirement New York ō Med Cooler Temp: TSCA PCBs □ YES Describe SDG #: PAGE: Low ☐ lab approved custom EDD NO EDD REQ'D NYSDEC EQuIS ☐ Ecological こうとうし New Jersey GWQS NJ SRP □ SPLP SRS WST-E Ma □ **EDDs** ANALYTICAL PARAMETERS (please note if contingent Other - call for price Petroleum Hydrocarbons - Selection is REQUIRED りるーアン ASP Category A ☐ ASP Category ☐ DRO-8915 CT ETPH ⋛ Turn-Around Time (TAT) Deliverables Certification IDs: TNI (TNI01284); CT (PH-0699); NJ (14751); NY (11402); PA (68-00773). Standard (10 business days) Verbal Regulatory/ Full* (Level IV) THE EPH-Fractionated - Cat 2 NJ, CT, PA Reduced (Level IIIII) □ NJ EPH-DRO - Category 1 NU EPH-C40 - Catygory 2 (Level I) Para meters Hard Copy: Std 3 week Rush/date needed (only if pre-approved)** 72 hr - 50%.... 96 hr - 35%.... 48 hr - 75%.... 6-9 day - 10% 24 hr - 100%. 5 day - 25%. Special Instructions/QC Requirements & Comments: フクト 1741 Preservative (use code) Container Type (use code) AL. 585 containers SED - Sediment SOL - Salid (specify) SL - Sludge Reporting Information ANC Sample Matrix 0 Matrix ò M - Wine S - Soil <u>o</u> . 0 3:00 Time 0 LIQ - Liquid (specify) GW - Groundwater SW - Surface Water DW - Drinking Wate WW - Waste Water Sampling 22.4 A = Amber Glass REPORT TO: INVOICE TO: D = Glass E = EnCore T = Terracore Container Code: B = Plastic C = Vial Date Address: Address Quote # FAX# # Od ☐ FedEx/UPS*** Attn: ☐ Client Courier Attn: Carrier (check one) ☐ IAL Courier Preservative Code: Depth (ft only) A CE racking F. 5 = NaOH 6 = H2SO4 **Equipment Rental** 2 = HCl 3 = HNO3 4 = MeOH 600 LAB COPIES - WHITE & YELLOW; CLIENT COPY - PINK Report to"/"Invoice To" same as above SAMPLE INFORMATION Customer Information Pomorin ١ Samples previously analyzed by IAL? processed and the turnaround time BY IAL'S TERMS & CONDITIONS completely. Samples cannot be ambiguities have been resolved. Please print legibly and fill out TAT starts the following day if 977-239 THE CLIENT HAS READ AND (TAT) will not start until any (found on rear of pink copy) samples rec'd at lab  $\geq 5PM$ . BY EXECUTING THIS COC, AGREES TO BE BOUND 0 COMPLETED BY IAL: Project Location (State): Field Sampling 70 Project Manager: Project Name: Bottle Order #: EMAIL Address Sampled by: Telephone #: Client ID 20 Company: Address

Integrated Analytical Labs 273 Franklin Road

Randolph, NJ 07869

#### SAMPLE RECEIPT VERIFICATION

CASE NO: <b>E 20</b> 028	97 CLIENT: 5+5
COOLER TEMPERATURE: 2°	- 6°C:✓ ( See Chain of Custody)
COC: COMPLETE)/ INCOM	Comments PLETE
KEY  ✓ = YES/NA	VOA received: Encore IGW - Methanol
→ = NO	(check one) Terra Core No Preservative
✓ Bottles Intact	
✓ no-Missing Bottles ✓ no-Extra Bottles	
✓ Sufficient Sample Volur	me
✓ no-headspace/bubbles ✓ Labels intact/correct	in VOs
✓ pH Check (exclude VOs	dry
✓ Correct bottles/preserva ✓ Sufficient Holding/Prep	
Multiphasic Sample	
Sample to be Subcontra  Chain of Custody is C	
¹ All samples with "Analyze Immediately" holding	times will be analyzed by this laboratory past the holding time. This includes but is not limited to
	sidual Chlorine, Total Residual Chlorine, Dissolved Oxygen, Sulfite.
ADDITIONAL COMMENTS:	
SAMPLE(S) VERIFIED BY:  CORRECTIVE ACTION REQ	UIRED: YES SEE BELOW) DATE 428/20
If COC is <b>NOT</b> clear, <b>STOP</b> unti	ll you get client to authorize/clarify work.
CLIENT NOTIFIED:	YES Date/ Time: NO NO
PROJECT CONTACT: SUBCONTRACTED LAB:	
DATE SHIPPED:	
ADDITIONAL COMMENTS:	
- 100	
VERIFIED/TAKEN BY:	INITIAL MA DATE 4/29/20

REV 10/2019

777 New Durham Rd., Edison, NJ 08817

708 228

CLIENT & PROJECT	REPOR	REPORTING & BILLING	_S	l										c 9.07	3	0
Name: Integrated Analytical Laboratories LLC	Contact:	Thomas Malanga						urnaro	Turnaround Time	e				Repor	Report Format	
	Fax #:			Ve	Verbal/Fax								Red	Reduced / Level III	el III	
Address: 273 Franklin Road	EMail to:	<u>imalanga@ialonline.</u>	COM	24	24 hr* 48	48 hr* 72 hr*	ır* 1 wk*		2 wk	Other:	6 Busine	6 Business Days				
Randolph, NJ 07869	Report to:	Thomas Malanga		Ha	Hard Copy								9	Special Requirements	equirem	ents
	Address:			72	72 hr* 1 wk*	/k* 2 wk*	k* 3 wk	٧k	0	Other:						
Telephone #: 973-361-4252				*	*Prior to sample arrival, Lab notification is required	ample a	rrival, L	ab notii	fication i	s requir	ed.					
Fax #: 973-989-5288													ď.	Preservative	1 - 2 - 1 O - 5	
Project Name: E20-02897	Invoice to:	Thomas Malanga			ANAL	ANALYTICAL PARAMETERS / PRESERVATIVES	PARA	HETER	S/PRE.	SERVAT	IVES		- 47	4 = H ₂ SO ₄ ; 5 = MeOH; 6 = Other	MeOH; 6 = (	Ther
Project Location (State): NJ	Address:			123 1	123 13	123 123 456 456	3 123 6 456	3 12 6 45	23   12 56 45	23 12	9 1 2	6 456	123	123	123	123
Project Manager:																
Reference ID#: PO#				5B)												
SAMPLE INFORMATION				106) əbine (												
Sample 10 Sample Depth (in Feet) Date	Sampling e Time	Matrix	# of	O latoT												
DE E20-02897-001 4/28/20	_	Soil	_	Run			_		_							
<b>35</b> of																
<b>3</b> 7																
			_													
				_					-	1						
				_				+		+	-					
	- 460-208556	460-208556 Chain of Custody			-	+	+		+	+	+	-				
	_				+		+	-			+					
				+												
Please print legibly and fill out completely. Samples cannot be processed and the turnaround ti-resolved.	annot be processed	and the turnaround ti	me will not start until any ambiguities have been	tart until ar	ıy ambiguit	ies have be	_	COOLER TEMP	ΜΡ	Сопсепиани	Concentrations Expected		.5	Known Hazard: yes	yes no	
O NOITANGIANOO HAMA	NEIDM			תיזים					J.	LOW MI	MED HIGH	Describe	äi			
EIMAIL CO	INFIRM		EQUINED	NED N			Note									

CUSTODY LOG

Signature/Company	Date	Time	Signature/Company			
Binquished by my	02/1/5	1136	Received by Clyph of Freely 578 12 1136	3871 75		
Monquished by:			Received by:	Lab Case #		
Relinquished by:			Received by:		PAGE:	OF
100-1001-001			49°C IRII ACIS	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		REV Feb 201

#### Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

	Lab ID:		02897-001
	Client ID:		20-048
	Matrix:		Soil
	Sampled Date		4/28/20
PARAMETER(Units)		Conc	Q MDL
Volatiles (Units)			(mg/Kg)
Dichlorodifluoromethane		ND	0.000369
Chloromethane		ND	0.000405
Vinyl chloride		ND	0.000403
Bromomethane		ND	0.000568
Chloroethane		ND	0.000452
Trichlorofluoromethane		ND	0.000382
Acrolein		ND	0.00461
1,1-Dichloroethene		ND	0.000388
Acetone		ND	0.00242
Carbon disulfide		0.00198	0.00024
Methylene chloride		ND	0.00184
Acrylonitrile		ND	0.00408
tert-Butyl alcohol (TBA)		ND	0.000968
trans-1,2-Dichloroethene		ND	0.00038
Methyl tert-butyl ether (MTBE)		ND	0.000282
1,1-Dichloroethane		ND	0.000247
cis-1,2-Dichloroethene		ND	0.000347
2-Butanone (MEK)		ND	0.000923
Bromochloromethane		ND ND	0.000903
Chloroform		ND	0.000276
1,1,1-Trichloroethane		ND ND	0.000333
Carbon tetrachloride		ND	0.000262
1,2-Dichloroethane (EDC)		ND ND	0.000202
Benzene		ND ND	0.00036
Trichloroethene		ND ND	0.000200
		ND ND	0.000277
1,2-Dichloropropane 1,4-Dioxane		ND ND	0.000222
Bromodichloromethane			
		ND	0.00019
cis-1,3-Dichloropropene		ND	0.000204
4-Methyl-2-pentanone (MIBK)		ND	0.000697
Toluene		ND	0.000218
trans-1,3-Dichloropropene		ND	0.000246
1,1,2-Trichloroethane		ND	0.000292
Tetrachloroethene		ND	0.000355
2-Hexanone		ND	0.00146
Dibromochloromethane		ND	0.000261
1,2-Dibromoethane (EDB)		ND	0.000188
Chlorobenzene		ND	0.000217
Ethylbenzene		ND	0.000262
Total Xylenes		ND	0.00102
Styrene		ND	0.000316
Bromoform		ND	0.00033
Isopropylbenzene		ND	0.000323
1,1,2,2-Tetrachloroethane		ND	0.000416
n-Propylbenzene		ND	0.000264

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

Lab II	D:	02897-001
Client II	D:	20-048
Matri	ix:	Soil
Sampled Da	ite	4/28/20
PARAMETER(Units)	Conc	Q MDL
Volatiles (Units)		(mg/Kg)
1,3,5-Trimethylbenzene	ND	0.000429
tert-Butylbenzene	ND	0.000303
1,2,4-Trimethylbenzene	ND	0.000491
sec-Butylbenzene	ND	0.000315
1,3-Dichlorobenzene	ND	0.00028
4-Isopropyltoluene	ND	0.000365
1,4-Dichlorobenzene	ND	0.00028
n-Butylbenzene	ND	0.000392
1,2-Dichlorobenzene	ND	0.000264
1,2-Dibromo-3-chloropropane	ND	0.000524
1,2,4-Trichlorobenzene	ND	0.000372
1,2,3-Trichlorobenzene	ND	0.000375
1,1,2-Trichloro-1,2,2-trifluoroethane	ND	0.00042
Methyl acetate	ND	0.000292
Cyclohexane	ND	0.000432
Methylcyclohexane	ND	0.000732
1,3-Dichloropropene (cis- and trans-)	ND	0.000246
		0.000240
TOTAL TIC's:	ND	
Semivolatiles (Units)		(mg/Kg)
N-Nitrosodimethylamine	ND	0.028
Benzaldehyde	ND	0.026
Phenol	ND	0.032
Aniline	ND	0.021
Bis(2-chloroethyl) ether	ND	0.026
2-Chlorophenol	ND	0.026
Benzyl alcohol	ND	0.031
2-Mathylphonol		0.010
2-ivicinyiphenoi	ND	0.019
	ND ND	0.019
2,2'-Oxybis(1-Chloropropane)		
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol **	ND	0.031
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine	ND ND	0.031 0.023
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone	ND ND ND	0.031 0.023 0.023
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane	ND ND ND ND	0.031 0.023 0.023 0.027
2-Methylphenol 2,2'-Oxybis(I-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone	ND ND ND ND	0.031 0.023 0.023 0.027 0.026
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene	ND ND ND ND ND	0.031 0.023 0.023 0.027 0.026 0.021
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone	ND ND ND ND ND ND	0.031 0.023 0.023 0.027 0.026 0.021 0.024
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol	ND ND ND ND ND ND ND ND ND	0.031 0.023 0.023 0.027 0.026 0.021 0.024 0.030
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane	ND	0.031 0.023 0.023 0.027 0.026 0.021 0.024 0.030 0.019 0.026
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid	ND N	0.031 0.023 0.023 0.027 0.026 0.021 0.024 0.030 0.019 0.026 0.027
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol	ND N	0.031 0.023 0.023 0.027 0.026 0.021 0.024 0.030 0.019 0.026 0.027 0.026
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol Naphthalene	ND N	0.031 0.023 0.023 0.027 0.026 0.021 0.024 0.030 0.019 0.026 0.027 0.026 0.026
2,2'-Oxybis(1-Chloropropane) 4-Methylphenol ** N-Nitrosodi-n-propylamine Acetophenone Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Bis(2-chloroethoxy) methane Benzoic acid 2,4-Dichlorophenol	ND N	0.031 0.023 0.023 0.027 0.026 0.021 0.024 0.030 0.019 0.026 0.027 0.026

ND = Analyzed for but Not Detected at the MDL Continued on next page.

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

	Lab ID:		02897-00	1
	Client ID:		20-048	
	Matrix:		Soil	
	Sampled Date		4/28/20	
PARAMETER(Units)		Conc	Q	MDL
Semivolatiles (Units)			(mg/Kg)	
4-Chloro-3-methylphenol		ND		0.022
2-Methylnaphthalene		ND		0.021
Hexachlorocyclopentadiene		ND		0.028
2,4,6-Trichlorophenol		ND		0.026
2,4,5-Trichlorophenol		ND		0.028
1,1'-Biphenyl		ND		0.027
2-Chloronaphthalene		ND		0.025
2-Nitroaniline		ND		0.025
Dimethyl phthalate		ND		0.024
2,6-Dinitrotoluene		ND		0.031
Acenaphthylene		ND		0.026
3-Nitroaniline		ND		0.024
Acenaphthene		ND		0.027
2,4-Dinitrophenol		ND		0.031
4-Nitrophenol		ND		0.030
2,4-Dinitrotoluene		ND		0.029
Dibenzofuran		ND		0.024
Diethyl phthalate		ND		0.019
Fluorene		ND		0.028
4-Chlorophenyl phenyl ether		ND		0.027
4-Nitroaniline		ND		0.020
1,2,4,5-Tetrachlorobenzene		ND		0.023
2,3,4,6-Tetrachlorophenol		ND		0.028
4,6-Dinitro-2-methylphenol		ND		0.031
N-Nitrosodiphenylamine		ND		0.031
1,2-Diphenylhydrazine		ND		0.032
4-Bromophenyl phenyl ether		ND		0.023
Hexachlorobenzene		ND		0.023
Atrazine		ND		0.025
Pentachlorophenol		ND		0.022
Phenanthrene		ND		0.031
Anthracene		ND		0.032
Carbazole		ND		0.029
Di-n-butyl phthalate		ND		0.027
Fluoranthene	4	ND		0.031
Benzidine		ND		0.025
Pyrene		ND		0.029
Butyl benzyl phthalate		ND		0.030
3,3'-Dichlorobenzidine		ND		0.029
Benzo[a]anthracene		ND		0.029
Chrysene	1	ND		0.019
Bis(2-ethylhexyl) phthalate		ND ND		0.030
Di-n-octyl phthalate		ND ND		0.029
Benzo[b]fluoranthene		ND ND		0.030
Benzo[k]fluoranthene		ND ND		0.031

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

	Case No.: E20-0.  Lab ID:		02897-001
	Client ID:		20-048
	Matrix:		Soil
			4/28/20
PARAMETER(Units)	Sampled Date	Conc	4/28/20 Q MDL
Semivolatiles (Units)			(mg/Kg)
			,
Benzo[a]pyrene		ND	0.028
Indeno[1,2,3-cd]pyrene		ND	0.031
Dibenz[a,h]anthracene		ND	0.030
Benzo[g,h,i]perylene		ND	0.031
Dinitrotoluene (2,4- and 2,6-)		ND	0.031
TOTAL TIC's:		ND	
PCB's (Units)			(mg/Kg)
Aroclor-1016		ND	0.00132
Aroclor-1221		ND	0.00132
Aroclor-1232		ND	0.00132
Aroclor-1242		ND	0.00132
Aroclor-1248		ND	0.00132
Aroclor-1254		ND	0.00132
Aroclor-1260		ND	0.00132
Aroclor-1262		ND	0.00132
Aroclor-1268		ND	0.00132
PCBs		ND	0.00132
Pesticides (Units)			(mg/Kg)
alpha-BHC		ND	0.000329
beta-BHC		ND	0.000329
gamma-BHC (Lindane)		ND	0.000329
delta-BHC		ND	0.000329
Heptachlor		ND	0.000329
Aldrin		ND	0.000329
Heptachlor epoxide		ND	0.000329
Endosulfan I		ND	0.000329
4,4'-DDE		ND	0.000329
Dieldrin		ND	0.000329
Endrin		ND	0.000329
Endosulfan II		ND	0.000329
4,4'-DDD		ND	0.000329
Endrin aldehyde		ND	0.000329
Endosulfan sulfate		ND	0.000329
4,4'-DDT		ND	0.000329
Endrin ketone		ND	0.000329
Methoxychlor		ND	0.000329
alpha-Chlordane		ND	0.000329
gamma-Chlordane	1	ND	0.000329
Toxaphene		ND	0.00395
Endosulfan (I and II)		ND	0.000329
Chlordane (alpha and gamma)	1	ND	0.000329

ND = Analyzed for but Not Detected at the MDL

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

Lab Case No.: E20-028		1005	001
Lab ID:		2897-	
Client ID:		20-04	
Matrix:		Soil	
Sampled Date		4/28/	
PARAMETER(Units)	Conc	Q	MDL
Herbicides (Units)	(	mg/K	(g)
Dalapon	ND		0.00658
Dicamba	ND		0.00658
2,4-D	ND		0.00658
2,4,5-TP (Silvex)	ND		0.00658
2,4,5-T	ND		0.00658
2,4-DB	ND		0.00658
Dinoseb	ND		0.00658
NJ-EPH-C40 (Units)	(	mg/K	g)
C9-C40	21.1	J	19.9
Alcohols (Units)	(	mg/K	g)
Methanol	ND		1.97
Metals (Units)	(	mg/K	g)
Aluminum	4640		2.17
Antimony	ND		0.217
Arsenic	0.687		0.163
Barium	41.1		0.272
Beryllium	0.316	J	0.163
Cadmium	ND		0.326
Calcium	3920		16.3
Chromium	16.3		0.272
Cobalt	8.86		0.163
Copper	50.4		0.380
Iron	13500		16.3
Lead	3.21		0.272
Magnesium	4030		16.3
Manganese	94.9		0.380
Mercury	ND		0.013
Nickel	23.0		0.380
Potassium	3050		21.7
Selenium	3.37	J	1.63
Silver	ND		0.326
Sodium	116		21.7
Thallium	ND		0.272
Vanadium	23.6		0.272
Zinc	19.4		1.09

ND = Analyzed for but Not Detected at the MDL

J= Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.

## **SUMMARY REPORT**

Client: S & S Environmental Project: POMPTON LAKES Lab Case No.: E20-02897

Lab ID: Client ID: Matrix: Sampled Date		2897-0 20-04 Soil 4/28/2	8
PARAMETER(Units)	Conc	Q	MDL
General Analytical (Units)			
Hexavalent Chromium(mg/Kg)	ND		0.380
pH/Corrosivity(SU)	8.38		NA
Trivalent (III) Chromium(mg/Kg)	16.3		0.380
Subcontracted Data (Units)	(	mg/Kg	;)
	*		*

ND = Analyzed for but Not Detected at the MDL

^{*}Subcontracted Results for Total Cyanide (9012B) by Test America - Edison are available in the Subcontracted Report section

TestAmerica Laboratories, Inc.

SUMMARY OF ANALYTICAL RESULTS: 460-208556-1 Job Description: E20-02897 For: Edrofins TestAmerica, Edison

Integrated Analytical Laboratories LLC PO BOX 8026

Parsippany, New Jersey 07054

Client ID	NJ SRS7 26D Tbl1A	NJ SRS7 26D Tbl1B	NJDEP	E20-02897-001
Lab Sample ID	Residential	Non-Residential	IGW Screening	460-208556-1
Sampling Date	Sept_2017	Sept_2017	Nov 2013	04/28/2020 10:05
Matrix				
1				
				Result Q MD
SOIL BY 9012B	14 15 No. 18			
Cyanide, Total (mg/kg)	47	089	20	0.12 U 0.12

U : Indicates the analyte was analyzed for but not detected.

Lab Contact: Jill Miller

Senior Project Manager (484)685-0871

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Sample #:	#:	acn NJD	NJDEP SOIL REMEDIATION	NOL		20-048	
Field ID:	Ö		STANDARDS				_
Lab ID:	<u>Ö</u> :	Residential	Non-Res	Default IGW		02897-001	
Date Sampled:	ed:	SRS	SRS	Screening		04/28/2020	
Depth(ft):	(#):	( - ) ( )	7 7111	Level			
( - 11 - 11 - 1 - 1 - 1 - 1 - 1 - 1 - 1	CAO	(gr)gin)	(gv/gm)	(mg/kg)		1	
Volatiles (mg/kg)					Conc	o R	MDL
Dichlorodifluoromethane	75-71-8	490	230000	39	2	0.00095	0.000369
Chloromethane	74-87-3	4	12	NS	Q	0.00095	0.000405
Vinyl chloride	75-01-4	0.7	2	0.005	Q	0.00095	0.000403
Bromomethane	74-83-9	25	59	0.04	Q	0.00095	0.000568
Chloroethane	75-00-3	220	1100	NS	Q	0.00095	0.000452
Trichlorofluoromethane	75-69-4	23000	340000	34	QN	0.00095	0.000382
Acrolein	107-02-8	0.5		0.5	Q	0.019	0.00461
1,1-Dichloroethene	75-35-4	11	150	0.008	Q	0.00095	0.000388
Acetone	67-64-1	70000	SN	19	Q	0.0095	0.00242
Carbon disulfide	75-15-0	7800	110000	9	0.00198	0.00095	0.00024
Methylene chloride	75-09-2	46	230	0.01	Q	0.0019	0.00184
Acrylonitrile	107-13-1	6.0	3	0.5	Q	0.019	0.00408
tert-Butyl alcohol (TBA)	75-65-0	1400	11000	0.3	Q	0.0038	0.000968
trans-1,2-Dichloroethene	156-60-5	300	720	9.0	Q	0.00095	0.00038
Methyl tert-butyl ether (MTBE)	1634-04-4	110	320	0.2	Q	0.00095	0.000282
1,1-Dichloroethane	75-34-3	<b>∞</b>	24	0.2	Q	0.00095	0.000347
cis-1,2-Dichloroethene	156-59-2	230	260	0.3	Q	0.00095	0.000329
2-Butanone (MEK)	78-93-3	3100	44000	6.0	Q	0.0038	0.000903
Bromochloromethane	74-97-5	SN	SN	NS	Q	0,00095	0.000276
Chloroform	67-66-3	9.0	2	0.4	Q	0.00095	0.000535
1,1,1-Trichloroethane	71-55-6	160000	SN	0.3	g	0,00095	0.000269
Carbon tetrachloride	56-23-5	2	4	0.005	Q	0.00095	0.000262
1,2-Dichloroethane (EDC)	107-06-2	6.0	က	0.005	Q	0.00095	0.00036
Benzene	71-43-2	2	S	0.005	Q	0.00095	0.000206
Trichloroethene	79-01-6	က	10	0.01	Q	0.00095	0.000277
1,2-Dichloropropane	78-87-5	2	S	0.005	Q	0.00095	0.000222
1,4-Dioxane	123-91-1	SS	SN	SN	2	0.190	0.035
Bromodichloromethane	75-27-4	_	ო	0.005	2	0.00095	0.00019
cis-1,3-Dichloropropene	10061-01-5	SN	SN	SN	2	0.00095	0.000204
4-Methyl-2-pentanone (MIBK)	108-10-1	SN	NS	SN	2	0.0019	0.000697
Toluene	108-88-3	6300	91000	7	Q	0.00095	0.000218
trans-1,3-Dichloropropene	10061-02-6	SN	NS	NS	Q	0.00095	0.000246
1,1,2-Trichtoroethane	2-00-62	2	ဖ	0.02	Q	0.00095	0.000292
Tetrachloroethene	127-18-4	43	1500	0.005	Q	0.00095	0.000355
2-Hexanone	591-78-6	NS	NS	NS	Q	0.0019	0.00146
Dibromochloromethane	124-48-1	က	8	0.005	S	0.00095	0.000261
1,2-Dibromoethane (EDB)	106-93-4	0.008	0.04	0.005	Q	0.00095	0.000188
Chlorobenzene	108-90-7	510	7400	9.0	2	0.00095	0.000217

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Ethylbenzene	100-41-4	7800	110000	13	QN	0.00095	0.000262
Total Xylenes	1330-20-7	12000	170000	19	Q	0.0019	0.00102
Styrene	100-42-5	06	260	က	Q	0.00095	0.000316
Bromoform	75-25-2	81	280	0.03	g	0.00095	0.00033
Isopropylbenzene	98-82-8	NS	NS	SN	9	0.00095	0.000323
1,1,2,2-Tetrachloroethane	79-34-5	-	က	0.007	Q	0.00095	0.000416
n-Propylbenzene	103-65-1	NS	NS	SN	2	0.00095	0.000264
1,3,5-Trimethylbenzene	108-67-8	NS	NS	SN	2	0.00095	0.000429
tert-Butylbenzene	9-90-86	NS	NS	SN	2	0.00095	0.000303
1,2,4-Trimethylbenzene	95-63-6	SN	SN	NS	9	0.00095	0.000491
sec-Butylbenzene	135-98-8	SN	SN	SN	9	0.00095	0.000315
1,3-Dichlorobenzene	541-73-1	5300	29000	19	2	0.00095	0.00028
4-Isopropyltoluene	99-87-6	SN	NS	NS	2	0.00095	0.000365
1,4-Dichlorobenzene	106-46-7	ഹ	13	2	9	0.00095	0.00028
n-Butylbenzene	104-51-8	NS	SN	SN	9	0.00095	0.000392
1,2-Dichlorobenzene	95-50-1	5300	29000	17	Q	0.00095	0.000264
1,2-Dibromo-3-chloropropane	96-12-8	0.08	0.2	0.005	Q	0.00095	0.000524
1,2,4-Trichlorobenzene	120-82-1	73	820	0.7	2	0.00095	0.000372
1,2,3-Trichlorobenzene	87-61-6	NS	NS	SN	Q	0.00095	0.000375
1,1,2-Trichloro-1,2,2-trifluoroethane	76-13-1	NS	SN	NS	Q	0.00095	0.00042
Methyl acetate	79-20-9	78000	NS	22	Q	0.0019	0.000292
Cyclohexane	110-82-7	NS	SN	NS	Q	0.00095	0.000432
Methylcyclohexane	108-87-2	NS	SN	NS	S	0.00095	0.000276
1,3-Dichloropropene (cis- and trans-)	542-75-6	2	7	0.005	Q	0.00095	0.000246
TOTAL TIC'S:		NS	NS	NS	2		YA

Semivolatiles (mg/Kg)					Conc	ď	RL	MDL	
N-Nitrosodimethylamine	62-75-9	0.7	0.7	0.7	9	L	0.032	0.028	
Benzaldehyde	100-52-7	6100	00089	NS	Q	o.	0.032	0.026	
Phenol	108-95-2	18000	210000	00	Q	0	0.032	0.032	
Aniline	62-53-3	SN	SN	SN	Q	o.	0.032	0.021	
Bis(2-chloroethyl) ether	111-44-4	0.4	2	0.2	Q	O.	0.032	0.026	
2-Chlorophenot	95-57-8	310	2200	0.8	Q	0.	0.032	0.026	
Benzyl alcohol	100-51-6	SN	SN	SN	Q	Ö	0.032	0.031	
2-Methylphenol	95-48-7	310	3400	NS	Q	ō	0.032	0.019	
2,2'-Oxybis(1-Chloropropane)	108-60-1	23	29	2	9	o	0.032	0.031	
4-Methylphenol **	106-44-5	31	340	SN	2	O.	0.032	0.023	
N-Nitrosodi-n-propylamine	621-64-7	0.2	0.3	0.2	2	0	0.032	0.023	
Acetophenone	98-86-2	2	2	က	2	0	0.032	0.027	
Hexachloroethane	67-72-1	12	48	0.2	Q	0.	0.032	0.026	
Nitrobenzene	98-95-3	co.	14	0.2	Q	0.	0.032	0.021	
Isophorone	78-59-1	510	2000	0.2	Q	0	0.032	0.024	
2-Nitrophenol	88-75-5	SN	SN	NS	2	0	0.032	0:030	
2,4-Dimethylphenol	105-67-9	1200	14000	_	Q	0	0.032	0.019	
Bis(2-chloroethoxy) methane	111-91-1	SN	SN	SN	2	0	0.032	0.026	
Benzoic acid	65-85-0	SN	SN	SN	Q	o	0.322	0.027	
2,4-Dichlorophenol	120-83-2	180	2100	0.2	2	Ö	0.032	0.026	
Naphthalene	91-20-3	9	17	25	Q	O.	0.032	0.026	
4-Chloroaniline	106-47-8	NS	SN	SN	Q	0.	0.032	0.023	
Hexachlorobutadiene	87-68-3	9	25	6.0	Q	0.	0.032	0.021	
Caprolactam	105-60-2	31000	340000	12	Q	0.	0.032	0.025	
4-Chloro-3-methylphenol	29-20-7	NS	NS	NS	Q	0	0.032	0.022	
2-Methylnaphthalene	91-57-6	230	2400	80	QV	0.	0.032	0.021	
Hexachlorocyclopentadiene	77-47-4	45	110	320	2	0	0.032	0.028	
2,4,6-Trichlorophenol	88-06-2	19	74	0.2	2	o.	0.032	0.026 i	
2,4,5-Trichlorophenol	95-95-4	6100	00089	89	Q	0	0.032	0.028	
1,1'-Biphenyl	92-52-4	61	240	140	Q	o.	0.032	0.027	
2-Chloronaphthalene	91-58-7	NS	NS	SN	Q	0.	0.032	0.025	
2-Nitroaniline	88-74-4	39	23000	SN	Q	0	0.032	0.025	
Dimethyl phthalate	131-11-3	NS	SN	SN	R	0	0.032	0.024	
2,6-Dinitrotoluene	606-20-2	0.7	က	NS	Q	0	0.032	0.031	
Acenaphthylene	208-96-8	NS	300000	NS	2	o o	0.032	0.026	
3-Nitroaniline	99-09-2	NS	NS	SN	Q	0.	0.032	0.024	
Acenaphthene	83-32-9	3400	37000	110	Q	0	0.032	0.027	
2,4-Dinitrophenol	51-28-5	120	1400	0.3	Q	Ö	0.032	0.031	
4-Nitrophenol	100-02-7	NS	SN	SN	2	0	0.032	0:030	
2,4-Dinitrotoluene	121-14-2	0.7	က	SN	2	0.	0.032	0.029	
Dibenzofuran	132-64-9	NS	SN	SN	2	0.	0.032	0.024	
Diethyl phthalate	84-66-2	49000	550000	88	Q	0.	0.032	0.019	
Fluorene	86-73-7	2300	24000	170	Q	0	0.032	0.028	
4-Chlorophenyl phenyl ether	7005-72-3	SN	SN	SN	Q	0	0.032	0.027	
4-Nitroaniline	100-01-6	NS	NS	NS	Q	0	0.032	0.020	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

1,2,4,5-Tetrachlorobenzene	95-94-3	NS	NS	SN	Q	0.032	0.023
2,3,4,6-Tetrachlorophenol	58-90-2	NS	NS	SN	Q	0.032	0.028
4,6-Dinitro-2-methylphenol	534-52-1	9	89	0.3	Q	0.032	0.031
N-Nitrosodiphenylamine	86-30-6	66	390	0.4	2	0.032	0.031
1,2-Diphenylhydrazine	122-66-7	0.7	2	0.7	Q	0.032	0.032
4-Bromophenyl phenyl ether	101-55-3	NS	NS	SN	S	0.032	0.023
Hexachlorobenzene	118-74-1	0.3	-	0.2	2	0.032	0.023
Atrazine	1912-24-9	210	2400	0.2	2	0.032	0.025
Pentachlorophenol	87-86-5	6.0	က	0.3	2	0.032	0.022
Phenanthrene	85-01-8	NS	300000	SN	2	0.032	0.031
Anthracene	120-12-7	17000	30000	2400	2	0.032	0.032
Carbazole	86-74-8	24	96	SN	2	0.032	0.029
Di-n-butyl phthalate	84-74-2	6100	68000	760	2	0.032	0.027
Fluoranthene	206-44-0	2300	24000	1300	2	0.032	0.031
Benzidine	92-87-5	0.7	0.7	0.7	2	0.032	0.025
Pyrene	129-00-0	1700	18000	840	2	0.032	0.029
Butyl benzyl phthalate	85-68-7	1200	14000	230	2	0.032	0:030
3,3'-Dichlorobenzidine	91-94-1		4	0.2	2	0.032	0.029
Benzo[a]anthracene	56-55-3	S)	17	8.0	2	0.032	0.019
Chrysene	218-01-9	450	1700	80	2	0.032	0:030
Bis(2-ethylhexyl) phthalate	117-81-7	35	140	1200	2	0.032	0.029
Di-n-octyl phthalate	117-84-0	2400	27000	3300	2	0.032	0:030
Benzo[b]fluoranthene	205-99-2	2	17	7	2	0.032	0.031
Benzo[k]fluoranthene	207-08-9	45	170	25	2	0.032	0.027
Benzo[a]pyrene	50-32-8	0.5	2	0.2	2	0.032	0.028
Indeno[1,2,3-cd]pyrene	193-39-5	ις.	17	7	2	0.032	0.031
Dibenz[a,h]anthracene	53-70-3	0.5	2	8.0	2	0.032	0:030
Benzo[g,h,i]perylene	191-24-2	380000	30000	SN	Q	0.032	0.031
Dinitrotoluene (2,4- and 2,6-)	25321-14-6	0.7	က	0.2	Q	0.032	0.031
TOTAL TIC's:		SN	NS	NS	2		

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

PCB's (mg/Kg)					Conc	a	<u>ا</u>	MDL
Aroclor-1016	12674-11-2	NS	SN	SN	QN	0.00	0329	0.00132
Aroclor-1221	11104-28-2	NS	SN	SN	Q	0.00	0329	0.00132
Aroclor-1232	11141-16-5	NS	SN	SN	Q	0.00	0329	0.00132
Aroclor-1242	53469-21-9	NS	NS	NS	Q	0.00	0329	0.00132
Aroclor-1248	12672-29-6	NS	NS	NS	Q	0.00	0.00329	0.00132
Aroclor-1254	11097-69-1	NS	NS	NS	QN	0.00	0329	0.00132
Aroclor-1260	11096-82-5	NS	NS	NS	Q	0.00	0329	0.00132
Aroclor-1262	37324-23-5	NS	NS	NS	QV	0.00	0329	0.00132
Aroclor-1268	11100-14-4	NS	NS	NS	QV	0.00	0329	0.00132
PCBs	1336-36-3	0.2	-	0.2	Q	0.00	0329	0.00132

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Pesticides (mg/Kg)					Conc	Q RL	MDL	
alpha-BHC	319-84-6	0.1	0.5	0.002	Q	0.000658	8 0.000329	_
beta-BHC	319-85-7	0.4	2	0.002	Q	0.000658	8 0.000329	
gamma-BHC (Lindane)	58-89-9	9.0	2	0.002	Q	0.000658	8 0.000329	_
delta-BHC	319-86-8	SN	SN	SN	2	0.000658	8 0.000329	
Heptachlor	76-44-8	0.1	0.7	0.5	Q	0.000658	8 0.000329	· - ·
Aldrin	309-00-2	0.04	0.2	0.2	Q	0.000658	8 0.000329	_
Heptachlor epoxide	1024-57-3	0.07	0.3	0.01	Q	0.000658	8 0.000329	
Endosulfan I	8-86-656	NS	NS	NS	2	0.000658	8 0.000329	-
4,4'-DDE	72-55-9	2	တ	18	Q	0.000658	8 0.000329	
Dieldrin	60-57-1	0.04	0.2	0.003	Q	0.000658	8 0.000329	
Endrin	72-20-8	23	340		Q	0.000658	8 0.000329	
Endosulfan II	33213-65-9	SN	SN	SN	Q	0.000658	8 0.000329	
4,4'-DDD	72-54-8	m	13	4	Q	0.000658	8 0.000329	
Endrin aldehyde	7421-93-4	SN	SN	NS	Q	0.000658	8 0.000329	
Endosulfan sulfate	1031-07-8	470	6800	2	Q	0.000658	8 0.000329	_
4,4'-DDT	50-29-3	2	80	+	Q	0.000658	8 0,000329	-74
Endrin ketone	53494-70-5	SN	SN	SN	Q	0.000658	8 0.000329	
Methoxychlor	72-43-5	390	5700	160	g	0.000658	8 0.000329	
alpha-Chlordane	5103-71-9	SN	SN	SN	Q	0.000658	8 0.000329	
gamma-Chlordane	5103-74-2	SN	SN	NS	Q	0.000658	8 0.000329	_
Toxaphene	8001-35-2	9.0	က	0.3	Q	0.00823	3 0.00395	
Endosulfan (I and II)	115-29-7	470	0089	4	Q	0.000658	8 0.000329	
Chlordane (alpha and gamma)	57-74-9	0.2	-	0.05	Q	0.000658	8 0.000329	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

NJ-EPH-C40 (mg/Kg)					Conc	ø	RL	MDL
9-C40	IALC9C40	NS	ν: Z	S.	21.1	-	49.9	199

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Metals (mg/Kg)					Сопс	Q RL	MDL :	
Aluminum	7429-90-5	78000	SN	0009	4640	5.43	2.17	
Antimony	7440-36-0	31	450	မ	S	0.543	0.217	
Arsenic	7440-38-2	19	19	19	0.687	0.543	0.163	
Barium	7440-39-3	16000	29000	2100	41.1	0.543	0.272	
Beryllium	7440-41-7	16	140	0.7	0.316	J 0.543	0.163	
Cadmium	7440-43-9	78	78	7	Q	0.543	0.326	
Calcium	7440-70-2	SN	SN	NS	3920	54.3	16.3	
Chromium	7440-47-3	SN	SN	NS	16.3	0.543	0.272	
Cobalt	7440-48-4	1600	290	06	8.86	0.543	0.163	
Copper	7440-50-8	3100	45000	11000	50.4	0.543	0.380	
Iron	7439-89-6	SN	SN	SN	13500	54.3	16.3	
Lead	7439-92-1	400	800	06	3.21	0.543	0.272	
Magnesium	7439-95-4	SN	NS	NS	4030	54.3	16.3	
Manganese	7439-96-5	11000	2900	99	94.9	0.543	0.380	
Mercury	7439-97-6	23	65	0.1	Q	0.031	0.013	
Nickel	7440-02-0	1600	23000	48	23.0	0.543	0.380	
Potassium	7440-09-7'	SN	SN	SN	3050	54.3	21.7	
Selenium	7782-49-2	390	5700	11	3.37	J 3.80	1.63	
Silver	7440-22-4	390	2200	-	Q	0.543	0.326	
Sodium	7440-23-5	SN	SN	NS	116	54.3	21.7	
Thallium	7440-28-0	withdrawn	withdrawn	m	Q	0.543	0.272	
Vanadium	7440-62-2	78	1100	SN	23.6	0.543	0.272	
Zinc	7440-66-6	23000	110000	930	19.4	5.43	1.09	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

								The second secon	500
General Analytical					Conc	a	RL	MDL	
Hexavalent Chromium-mg/Kg	18540-29-9	240	20	NS	9		1.00	0.380	
pH/Corrosivity-SU	SRP 6	NS	SN	SN	8.38		¥	¥	
Trivalent (III) Chromium-mg/Kg	16065-83-1	120000	NS	SN	16.3		1.00	0.380	

S S Environmental Project Name: POMPTON LAKES IAL SDG No:E20-02897

Subcontracted Data					Conc	a	RL	MDL
		SN	S	S	<i>د</i> .		ċ	
NJDEP Soil Remediation Standards: Remediation Standards N.J.A.C. 7:26D, May 2012; Amended Sept 2017	emediation Standards N	.J.A.C. 7:26D, May 20	12; Amended Sept 20	17				
BOLD Conc	Indicates a concentr	itration that exceeds applicable criteria	pplicable criteria.					
BOLD RL	Indicates RL that e	Indicates RL that exceeds applicable criteria.	ería.					
BOLD MDL	Indicates MDL that	t exceeds applicable criteria	riteria.					
NS = No Standard Available								
~ = Sample not analyzed for								
ND = Analyzed for but Not Detected at the MDL	the MDL							
J = Concentration detected at a value below the RL and above the MDL for target compounds. For non-target compounds (i.e. TICs), qualifier indicates estimated concentrations.	elow the RL and above	the MDL for target con	npounds. For non-targ	et compounds (i.e.	TICs), qualifie	r indicate	s estimated	concentrations
? = Results not available								
Subcontracted Results for Total Cyanide (9012B) by Test America -Edison are available in the Subcontracted Report section	e (9012B) by Test Amer	rica -Edison are availal	ble in the Subcontracte	d Report section				